

OWSM-CTC: An Open Encoder-Only Speech Foundation Model for Speech Recognition, Translation, and Language Identification

HONDA

Yifan Peng¹, Yui Sudo², Muhammad Shakeel², Shinji Watanabe¹

¹Carnegie Mellon University ²Honda Research Institute Japan

OWSM-CTC

Background

- Speech foundation models perform well in various speech processing tasks with a unified architecture
- > They typically use an autoregressive architecture
 - Encoder-decoder
 - Decoder-only
- Limitations of autoregressive models compared to non-autoregressive models
 - Slower inference speed
 - More hallucination

- Open Whisper-style Speech Models (OWSM) reproduce Whisper (Radford et al., 2023) using publicly available data and open-source toolkits (Peng et al., 2023, 2024)
 - Previous OWSM models use an encoder-decoder architecture
- OWSM-CTC is a CTC-based non-autoregressive model that mimics the functionalities of Whisper and OWSM
 - Multilingual automatic speech recognition (ASR)
 - Any-to-any speech translation (ST)
 - Spoken language identification (LID)
- Advantages of OWSM-CTC compared to encoder-decoder OWSM
 - Comparable or superior performance on various benchmarks
 - 3x to 4x inference speed-up on segmented speech; 20x speed-up on long speech

Training Setups

- Data: 180k hours of public ASR & ST covering 151 languages (same as previous OWSM)
- Architecture: 27-layer E-Branchformer encoder with 1B parameters
- Cost: 19k hours on 64 NVIDIA A100 (40GB) GPUs
- Toolkit: ESPnet based on PyTorch

Results: LID

OWSM-CTC significantly outperforms previous encoder-decoder models on FLEURS

	Accuracy % (↑)		
Whisper (encoder-decoder) (Radford et al., 2023)			
base	47.6		
small	53.1		
medium	54.8		
OWSM v3 (encoder-decoder) (Peng et al., 2023e)			
medium	81.4		
OWSM v3.1 (encoder-decoder) (Peng et al., 2024)			
base	41.9		
medium	75.6		

Less hallucination

OWSM-CT	C (ours)
medium	

(Optional)

<task> CNN Speech Features

Results: ASR & ST

87.6

- OWSM-CTC achieves competitive or better performance while being 3x to 4x faster at inference time
 - English ASR: Word Error Rate averaged over 9 test sets

• ST: BLEU scores averaged over various

Results: Long-Form ASR

- > Audios ranging from 6 to 27 minutes
- First, an unsegmented long recording is split into overlapped chunks of 30s
 - Context length: the duration of overlapped regions
- Then, CTC greedy decoding is performed on batched chunks
- CTC-based non-autoregressive decoding is faster and more robust for long-form ASR

	Context Length	WER % (\downarrow)	Speed-up (↑)
Whisper	(encoder-decoder	•) (Radford et a	al., 2023)
base	-	5.3	1.40x
small	-	4.4	1.62x
medium	-	3.8	0.86x

OWSM v3.1 (encoder-decoder) (Peng et al., 2024)					
base	-	9.6	1.40x		
medium	-	5.7	1.00x		
OWSM-CTC (ours)					
	2s	<u>5.4</u>	<u>22.40x</u>		
medium	4s	<u>5.2</u>	<u>19.35x</u>		
	6s	<u>5.2</u>	<u>16.07x</u>		
	8 s	<u>5.2</u>	<u>12.09x</u>		

Results: Robustness

- A quantitative measure of "hallucination"
 - Autoregressive decoding might fall into repetitions of a few characters or words
 A hypothesis is considered as a failure if it contains any character-level θ-gram (θ = 1,...,θ_{max}) that consecutively occurs for at least δ times

$\theta_{\rm max}$	δ	Model		#Failures (↓)	
10	5	OWSM v3.1 OWSM v3.1	OWSM v3.1 OWSM v3.1 (beam 5)		
		OWSM-CTC	C (ours)	3	
Input	length	n 5s	10s	20s	
Whisp large-	Whisper (encoder-decoder) (Radford et al., 2023)large-v3FjellFusiletRekordverk				
OWS mediu	M v3. m	1 (encoder-de thank you	coder) (Per thank you	ng et al., 2024) (Applause)	
OWS mediu	M-C7 m	Г С (ours) .	(()	

directions on CoVoST-2

- There are 286k ST samples in total
- OWSM-CTC is much more robust to this type of errors
- OWSM-CTC hallucinates less for noise input

References

- Radford, Alec, et al. "Robust speech recognition via large-scale weak supervision." in Proc. ICML, 2023.
- Peng, Yifan, et al. "Reproducing whisper-style training using an open-source toolkit and publicly available data." in *Proc. ASRU*, 2023.
- Peng, Yifan, et al. "OWSM v3.1: Better and Faster Open Whisper-Style Speech Models based on E-Branchformer." in Proc. INTERSPEECH, 2024.